R&D of a Pulsatile Rotary Heart Pump Imitating the Native Ventricle

Author:

Qian K.X.1,Jing T.1,Yuan H.Y.1,Wang H.1,Wang F.Q.1,Zeng P.1

Affiliation:

1. Jiangsu University

Abstract

It is evident that a pulsatile flow is important for blood circulation because the flow pulsatility can reduce the resistance of peripheral vessels. It is difficult, however, to produce a pulsatile flow with an impeller pump, since blood damage will occur when a pulsatile flow is produced. Further investigation has revealed that the main factor for blood damage is turbulence shear, which tears the membranes of red blood cells, resulting in free release of haemoglobin into the plasma, and consequently lead to haemolysis. Therefore, the question for producing a pulsatile flow with low haemolysis becomes how to develop a pulsatile impeller pump with less turbulence? The authors have successively developed a pulsatile axial pump and a pulsatile centrifugal pump. In the pulsatile axial pump, the impeller reciprocates axially and rotates simultaneously. The reciprocation is driven by a pneumatic device and the rotation by a DC motor. For a pressure of 40mm Hg pulsatility, about 50mm axially reciprocation amplitude of the impeller is desirable. In order to reduce the axial amplitude, the pump inlet and the impeller both have cone-shaped heads, thus the gap between the impeller and the inlet pipe changes by only 2mm, that is, the impeller reciprocates up to 2mm, a pressure pulsatility of 40mmHg can be produced. As the impeller rotates with a constant speed, low turbulence in the pump can be expected. In the centrifugal pulsatile pump, the impeller changes its rotating speed periodically; the turbulence is reduced by designing an impeller with twisted vanes which enable the blood flow to change its direction rather than its magnitude during the periodic change of the rotating speed. In this way, a pulsatile flow is produced and the turbulence is minimized. Compared to the axial pulsatile pump, the centrifugal pulsatile pump needs only one driver and thus has more application possibilities. The centrifugal pulsatile pump has been used in animal experiments. The pump assisted the circulation of calves for several months without harm to the blood elements and the organ functions of the experimental animal. The experiments demonstrated that the pulsatile impeller is the most efficient pump for assisting heart recovery, because it can produce a pulsatile flow like a diaphragm pump and has no back flow as what occurs in a non-pulsatile rotary pump; the former reduces the circulatory resistance and the later increases the diastole pressure in aorta, and thus increase the perfusion of coronary arteries of the natural heart.

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. Sethia V, Wheatley DJ. The current status of mechanical circulatory support. Clinical Physics and Physiology Measurement, 1986; 7: 101-106.

2. Belenger J, Knight CH. Pulse quality versus erythrocyte damage in blood pump design. Proceeedings of the European Society for Artificial Organs, 1980: 7: 284.

3. Qian KX. Pulsatile centrifugal impeller heart: a successful application of engineering to medicine. Biomedical Engineering Applied Basis Communication (Chinese Taipei), 1995, 7, 265-275.

4. Qian KX. Pulsatile impeller heart: a viable alternative to problematic diaphragm heart. Journal of Medical Engineering Physics, 1996, 18, 675-679.

5. Qian KX. Long term survival of calves with a left ventricular assist impeller pump. Journal of Medical Engineering Physics. 1997, 19, 675-679.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3