A Force-Feedback Assembly Method for Micro Parts Based on SRNN

Author:

Zhao Lin Hui1,Zhang Jian Cheng1

Affiliation:

1. Beijing Union University

Abstract

Force-feedback information is usful for micro-assembly system to enhence its contact sensing capability. On the basis of this view, a 3D force-feedback assembly method is proposed in this paper. It uses coordinate conversion to combine ideal pose data with pose error vector for assembly control. A kind of simple recurrent neural network (SRNN), whose weights is modified by using Levenberg-Marquardt (LM) algorithm, is applied to establish the mapping relationship between pose error vector and 6-DOF contact force/toque feedback form sensor. Experiments are carried out on backlash slider and base parts assembly to verify the performance of this method. It is proved that SRNN based on LM algorithm has good convergence ability and good fitting effects. Also,pose error can be accurately estimated and assembly searching times can be greatly reduced.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3