Abstract
A Finite-element parallel computing frame—PANDA and its implementation processes are introduced. To validate the parallel performance of the PANDA frame, a series of tests were carried out to obtain the computing scale and the speedup ratios. First, three different large-scale freedom degree models (i.e. 1.83 million, 7 million and 10 million) of a typical engineering clamp were created in MSC.Patran and were translated into geometric-grid files that can be identified in PANDA frame. Second, Linear static parallel computations of the three cases were successfully carried out on large parallel computers with preconditioned conjugate gradient methods in PANDA frame. The speedup ratios of the three cases were obtained with a maximum process number of 64. The results show that the PANDA frame is competent for carrying out large-scale parallel computing of 10 million freedom degrees. In each scale,the parallel computing is nearly linearly accelerated along with the increase of process numbers, moreover, a super-linear speedup appears in some cases. The speedup curves show that the linear degree increases when the computing scale enlarges. The influence of different communication bandwidths on computing efficiency was also discussed. All the testing results indicate that the PANDA frame has excellent parallel performance and favorable computing scalability.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献