Computed Extinction Limits and Flame Structures of Opposed-Jet Syngas Diffusion Flames

Author:

Shih Hsin Yi1,Hsu Jou Rong1

Affiliation:

1. Chang Gung University

Abstract

This paper reports a numerical study on the extinction limits and flame structures of opposed-jet syngas diffusion flames. A narrowband radiation model is coupled to the OPPDIF program, which uses detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames over the entire range of flammable strain rates with flame radiation. The effects of syngas composition, strain rate, ambient pressure, and dilution gases on the flame structures and extinction limits of H2/CO synthetic mixture flames were examined. Results indicate the flame structures and flame extinction are impacted by the composition of syngas mixture significantly. From hydrogen-lean syngas to hydrogen-rich syngas fuels, flame temperature increases with increasing hydrogen content and ambient pressure, but the flame thickness is decreased with ambient pressure and strain rates. Besides, the dilution effects from CO2, N2, and H2O, which may be present in the syngas mixtures, were studied. The flame is thinner and flame temperature is lower when CO2 is the diluents instead of N2. The combustible range of strain rates is extended with increasing hydrogen percentage and ambient pressure, but it is decreased the most with CO2 as the dilution gas due to the dilution effects. Complete flammability limits using strain rates, maximum flame temperature as coordinates can provide a fundamental understanding of syngas combustion and applications.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3