Affiliation:
1. Chongqing University of Arts and Sciences
Abstract
The Camassa-Holm and Degasperis-Procesi equation describing unidirectional nonlinear dispersive waves in shallow water is reconsidered by using an auxiliary elliptic equation method. Detailed analysis of evolution solutions of the equation is presented. Some entirely new periodic-soliton solutions, include Jacobi elliptic function solutions, hyperbolic solutions and trigonal solutions, are obtained. The employed auxiliary elliptic equation method is powerful and can be also applied to solve other nonlinear differential equations. This method adds a new route to explore evolution solutions of nonlinear differential equation.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献