Persulfate Oxidation Activated by Peroxide with and without Iron for Remediation of Soil Contaminated by Heavy Fuel Oil: Laboratory and Pilot-Scale Demonstrations

Author:

Fang Shyang Chyuan1,Lo Shang Lien1

Affiliation:

1. National Taiwan University

Abstract

The main objective of this study was to evaluate and optimize the chemical oxidation process to be implemented at a power plant in Penghu County, Taiwan through laboratory and pilot-scale experiments were used to evaluate and optimize the chemical oxidation process at a power plant in Penghu County, Taiwan. Prior to pilot test, bench-scale tests were performed in the laboratory and analytical results indicated that persulfate oxidation achieved 90% removal of fuel oil while Fenton-like oxidation achieved only 41% removal of fuel oil within three days of testing period. Persulfate oxidation coupled with Fenton-like reaction was then used in a pilot test to treat the contaminated soil onsite. The Fenton-like reaction served the first stage of oxidation which formed hydroxyl radicals to break down fuel oil. The excess heat and ferrous ions resulted from such oxidation process would then activate persulfate oxidation which, in turn, produced sulfate radicals for continual brake-down of fuel oil. Result of soil pilot test indicated that the concentration of fuel oil was reduced to below the regulated standard in less than a week. Because the treated soil was originated from the local basaltic basement rock, it is rich in heavy metals, by nature. As such, the heavy metals as nickel and chromium were detected in leachate collected from the treatment cells, at concentrations exceeding the Taiwan Contaminant Control Standard and would have posed secondary contamination to the ambient environment if in-situ soil persulfate oxidation was implemented. Therefore, the result of this case study provides an alert that implementation of in-situ persulfate oxidation for soil and groundwater treatment could pose a threat of secondary contamination of heavy metals to the ambient environment.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3