Synthesis of ZnO Nanoparticles by a Novel Gas Condensation System

Author:

Chang Ho1,Jwo Ching Song1,Tsung Tsing Tshih1,Fan Pei Shu1,Wu Yan Chyuan1,Tsai Ming Hsun1

Affiliation:

1. National Taipei University of Technology

Abstract

This paper describes an innovative system to produce nanoparticles based on the theory of gas condensation in producing nanoparticles. In a vaccuum environment, the system used the energy produced by high frequency induction to vaporize a pure zinc rod inside the crucible. During the vaporization the chamber was filled with He gas, so the high-temperatured vaporized metal can undergo momentum exchange with He gas and at the same time, induce the vaporized metal to move to the cold trap. Upon reaching the wall of the cold condenser, the vaporized metal instantly condensed, forming nanoparticles. The TEM image shows that their average diameter was 30 nm, and the size was very consistent. In addition, the Zeta potential and average diameter of the ZnO nanofluid was also measured under different pH conditions to determine the stability of the ZnO nanofluid. Moreover, in order to verify the practicability of the fabricated ZnO nanoparticles, the ZnO nanofluid was inspected by UV/Vis absorption spectrum, and the results show that ZnO nanoparticles absorption ability was within a wavelength range from 350nm to 550nm.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3