Bonding and Integration of Silicon Carbide Based Materials for Multifunctional Applications

Author:

Singh Mrityunjay1,Halbig Michael C.1

Affiliation:

1. NASA Glenn Research Center

Abstract

Robust bonding and integration technologies are critically needed for the successful implementation of silicon carbide based components and systems in a wide variety of aerospace and ground based applications. These technologies include bonding of silicon carbide to silicon carbide as well as silicon carbide to metallic systems. A diffusion bonding based approach has been utilized for joining of silicon carbide (SiC) to silicon carbide sub-elements for a micro-electro-mechanical systems lean direct injector (MEMS LDI) application. The objective is to join SiC sub-elements to from a leak-free injector that has complex internal passages for the flow and mixing of fuel and air. A previous bonding approach relied upon silica glass-based interlayers that were non-uniform and not leak free. In the newly developed joining approach, titanium foils and physically vapor deposited titanium coatings were used to form diffusion bonds between SiC materials using hot pressing. Microscopy results show the formation of well adhered diffusion bonds. Initial tests show that the bond strength is much higher than required for the component system. Benefits of the joining technology are fabrication of leak free joints with high temperature and mechanical capability.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Manufacturing of Ceramic Components using Robust Integration Technologies;Green and Sustainable Manufacturing of Advanced Material;2016

2. Diffusion bonding of SiC fiber-bonded ceramics using Ti/Mo and Ti/Cu interlayers;Ceramics International;2015-03

3. Wetting Behaviors of Nickel-Based Alloys on Sintered Silicon Carbide Ceramics;Key Engineering Materials;2014-03

4. Interfacial Characterization of Diffusion-Bonded Monolithic and Fiber-Bonded Silicon Carbide Ceramics;Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials VII;2013-12-05

5. TEM Observation of the Ti Interlayer between SiC Substrates during Diffusion Bonding;Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials VI;2012-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3