The Prediction Model of Cutting Forces Based on Johnson-Cook’s Flow Stress Model

Author:

Liu Hai Tao1,Sun Ya Zhou1,Lu Ze Sheng1,Han Li Li1

Affiliation:

1. Harbin Institute of Technology

Abstract

Thin-walled parts with complex configurations are extensively used in aerospace and precise instrument industry. However, because of low stiffness, cutting forces, clamping forces and residual stresses in cutting have been the main factors influenced on machining accuracy of thin-walled parts. Furthermore, biggish deviation exists between practical finished surface and theoretical value as a result of machining deformation caused by cutting force namely “cutter relieving” phenomenon; besides, direct relation exists between determination of clamping force and generation of machining residual stress and cutting force, so it is necessary to build up accurate cutting force prediction model to improve the machining accuracy of thin-walled parts. Therefore, cutting force prediction model based on Johnson-Cook’s flow stress model and Oxley’s shear angle model has been developed, which takes the property of high strain, high strain ratio in area of cut and high cutting temperature into account fully and determines shear angle more accurately on the basis of force balance principle; with different cutting and tool geometric parameters existing, perform simulation and experiment studies on cutting force prediction model, verify the validity of prediction model and obtain the response rules resulted from cutting force prediction model acting on cutting and tool geometric parameters.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3