New Insights into Plasticity-Induced Crack Tip Shielding via Mathematical Modelling and Full Field Photoelasticity

Author:

Tee K.F.1,Christopher Colin J.1,James M. Neil1,Patterson Eann A2

Affiliation:

1. University of Plymouth

2. Michigan State University

Abstract

The topic of plasticity-induced closure and its role in shielding a crack tip from the full range of applied stress intensity factor has provoked considerable controversy over several decades. We are now in an era when full field measurement techniques, e.g. thermoelasticity and photoelasticity, offer a means of directly obtaining the stress field around a crack tip and hence the effective stress intensity factor. Nonetheless, without a clear understanding of the manner in which the development of plasticity around a growing crack affects the applied stress field, it will remain difficult to make crack growth rate predictions except through the use of an often highly conservative upper bound growth rate curve where closure is absent, or through semi-empirical approaches. This paper presents new evidence for an interpretation of plasticity-induced crack tip shielding as arising from two separate effects; a compatibility-induced interfacial shear stress at the elastic-plastic interface along the plastic wake of the crack, and a crack surface contact stress which will vary considerably as a function of stress state, load and material properties.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3