Residual Area Max Depth Model for Nanoindentation Hardness Size Effect of Single Crystal Silicon

Author:

Zhou L.1,Yao Ying Xue1,Pahlovy Shahjada Ahmed1

Affiliation:

1. Harbin Institute of Technology

Abstract

In material nanoindentation hardness testing, the hardness will decrease with the indentation depth or peak load increase, i.e. indentation size effect (ISE). There are several models and equations were proposed to describe ISE. But the variables self-inaccurate in these models and equations, it will affect the result trueness. Single crystal silicon was used for nanoindentation experiments, and max depths were obtained from these experiments. Combining Matlab software, residual areas were obtained by atomic force microscopy (AFM). Based on max depth and residual area, a new model—residual area max depth model was proposed for indentation size effect in nanoindentaion hardness. The new model perhaps can understand and describe ISE in indentation hardness better than other models and equations.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3