Influence of Nitride on Sinterability of the Composite of Lithium Aluminum Silicate and Silicon Carbide

Author:

Iguchi Mabito1,Umezu Motohiro1,Kataoka Masako1,Nakamura Hiroaki1,Ishii Mamoru1

Affiliation:

1. Taiheiyo Cement Corporation

Abstract

Ceramics with zero thermal expansion coefficients at room temperature (293K) were investigated. We found the thermal expansion coefficient was controlled by a compounding ratio of lithium aluminum silicate (LAS) and silicon carbide (SiC), which have negative and positive thermal expansion coefficients respectively. Although it was difficult to densify the composite of the LAS and SiC (LAS/SiC) in the sintering process, an addition of nitride improved the sinterability of the LAS/SiC. In order to examine the effect of the nitride additive, at first, the melting point of the LAS with silicon nitride (Si3N4) or aluminum nitride was measured by TG-DTA. The melting point of the LAS decreased with existence of nitride. It is believed that the densification of the LAS/SiC was promoted by the nitride, because the nitride causes the LAS/SiC to form a liquid phase, thereby decreasing the melting point. Next, the lattice constant of the LAS with Si3N4 was measured by XRD and it was verified that the a-axis was longer and the c-axis was shorter than those of the LAS without additive. It is supposed that this phenomenon is due to the substitution of nitrogen for oxygen in the LAS lattice, and the decrease of the melting point of the LAS with nitride seems to be influenced by this substitution of nitrogen.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3