Bulk Consolidation of Non-Oxide Ceramic Powders Derived from Polymer Precursors

Author:

Ishihara Satoru1,Nishimura Toshiyuki1,Bill Joachim2,Aldinger Fritz2,Wakai Fumihiro3

Affiliation:

1. National Institute for Materials Science

2. Universität Stuttgart

3. Tokyo Institute of Technology

Abstract

Consolidation of pyrolyzed powders has been tried by hot isostatic pressing (HIP) without sintering additives, in order to obtain dense non-oxide ceramic bulk materials derived from polymer precursors. Si1.0C1.6N1.3 ceramic powders were derived from a polyvinylsilazane polymer. The polymer was thermally crosslinked at 250oC and pyrolyzed at 1050oC under Ar atmosphere. The pyrolyzed powders were die-pressed into rectangular bars at room temperature and densified by HIP at 1400oC-900 MPa and 1500oC-950 MPa. Dense ceramic monolith, in which pores were not observed by optical microscopy, was obtained by the HIP consolidation at 1500oC-950 MPa. The microstructure of the ceramic monolith was a nano-composite structure consisted of α-Si3N4 and graphite phases. In the compression tests of the HIP-treated sample, slight plastic deformation was observed at 1400 and 1500oC in spite of high compressive stress over 1000 MPa. On the other hand, the sample showed a compressive strain of about 7% at 1000 MPa at 1600oC. The compressive strain of about 11% was achieved at 1700oC.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sintering of nanoceramics;International Materials Reviews;2008-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3