A Study on Damage Behavior and Strength of Smart Material under Low Temperature Using Acoustic Emission

Author:

Lee Jin Kyung1,Park Young Chul2,Lee Sang Ll1,Lee Joon Hyun3,Lee Jong Baek1

Affiliation:

1. Dongeui University

2. Dong-A University

3. Pusan National University

Abstract

Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite (MMC). TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress using shape memory effect in the matrix. A hot press method was used to create the optimal condition for the fabrication of shape memory alloy (SMA) composite. The bonding effect between the matrix and the reinforcement within the SMA composite was strengthened by the cold rolling. The fabricated composite by these processes can be applied as a part of the aircraft, and this part is operated under severe flying condition such as low temperature and high pressure. In this study, an acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 SMA composite at low temperature condition. The results showed that the tensile strength of the TiNi/Al6061 SMA composite increased with the TiNi reinforcement at low temperature condition, but the strength for the specimen subjected to the cold rolling decreased. AE parameters of AE counts, amplitude and energy were useful to evaluate the microscopic damage behavior of the composite.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference4 articles.

1. Y. Huang, Y. Gueping and, P. He: Scripta Metallurgica, Vol. 19 (1985), p.1033�1038.

2. H. Prahlad and I. Chopra: Smart Structures and Materials 1999: Smart Structures and Integrated Systems (1999), p.604�616.

3. K. Arup, Maji and I. Negret: J. of Engineering mechanics, Vol. 124, No. 10 (1998), p.1121� 1128.

4. J.K. Lee, J.H. Lee H.S. Choi and M.R. Lee: Transactions of the KSME, A, Vol. 24, No. 10 (2000), p.2520�2528.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3