Shape Prediction of Fatigue Crack Based on a Given Stress Intensity Factor Distribution

Author:

Wu Zhi Xue1

Affiliation:

1. Yangzhou University

Abstract

There is an inherent relationship between the shape and the corresponding stress intensity factor (SIF) distribution of a crack. A typical inverse problem of linear elastic fracture mechanics about a crack, i.e. to predict the shape of a crack assuming that some information of SIF distribution is known, is presented. A finite-element based numerical procedure is used to determine the shape, correspondingly the SIF, of a mode-I planar crack based on a specified SIF distribution. The crack front is modeled using cubic splines, which are determined by a number of control-points. The crack front shape is achieved iteratively by moving control-points based on a gradientless algorithm. Numerical examples for planar cracks in through-cracked and surface-cracked plates with finite thickness and width are presented to show the validity and practicability of the proposed method. The SIFs obtained by present method are compared with the known solutions for cracks with same dimensions. The presented method is considered to be a promising alternative to the evaluation of SIFs and the prediction of shape evolution for fatigue cracks.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite element study of mode I crack opening effects in compression-loaded cracked cylinders;Engineering Fracture Mechanics;2017-04

2. Fatigue lifetime estimation of railway axles;Engineering Failure Analysis;2017-03

3. Residual fatigue lifetime estimation of railway axles for various loading spectra;Theoretical and Applied Fracture Mechanics;2016-04

4. Point load effect on the buried polyolefin pipes lifetime;Polymer Engineering & Science;2015-10-30

5. Assessment of the Stability of a Surface Crack in Laminates;Mechanics of Composite Materials;2014-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3