Recent Developments in SiAlON Research in New Zealand

Author:

MacKenzie Kenneth1,White G.Vaughan2,Rumsey Ben2,Woolf Hayley2

Affiliation:

1. Victoria University of Wellington

2. Industrial Research Ltd.

Abstract

An important aspect of previous sialon research in NZ has been the development of new synthesis methods, including refinements in carbothermal reduction and nitridation (CRN) methods and the use of mechanochemical activation of sialon precursors (either Al and Si nitrides and oxides or CRN mixtures). Mechanochemical activation of CRN mixtures of clay and carbon heated in N2 formed β-sialon (z = 2) at 1300oC (100oC lower than in unground mixtures) but 21R polytypoid and corundum were also formed. More recently, our attention has focussed on the technique of silicothermal reduction and nitridation (SRN) to synthesise other sialons, including the AlN polytypoids and Na and Li α-sialons. The interest in the polytypoids springs from their expected physical properties (thermal conductivity and good electrical insulation similar to AlN), their covalent bonding and relatively light weight arising from their high Al and N contents and their elongated crystal morphology which may improve the crack resistance of polytypoid composites with α-sialon. This paper describes the development of SRN single-step synthesis of high-purity dense 15R sialon from clay, Si and AlN, and the effect of additives on the synthesis and sintering of the product. A method is also described for SRN synthesis of Na and Li α-sialons from clay, Si and AlN using fluoride additives. Fluorides have the advantage of small size, high electronegativity, leading to their known facilitation of AlN synthesis. Furthermore, they do not readily enter the sialon structure but may toughen it by formation of glassy phases. Fluorides allow use of clay in this SRN synthesis by introducing M+ without additional oxygen, but have the disadvantage of generating SiF4 as a byproduct. The reaction using LiF proceeds readily at the very low temperature of 1200oC via an O-sialon intermediate by a mechanism which probably involves Si migration assisted by the formation of SiF4.The effect of mechanochemical activation (high energy grinding) on the SRN formation and sintering of Na and Li α-sialons, O and β-sialon has also been studied.Grinding the SRN O-sialon precursor promotes O-sialon formation in powders but not in pellets due to pre-reaction sintering, which is facilitated by the smaller particle size. Grinding Na and Li α-sialon SRN precursors forms a mixture of sialons rather than the target monophase product, while sintering of all the sialons is assisted by grinding their SRN precursors.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference17 articles.

1. M.E. Bowden, K.J.D. MacKenzie and J.H. Johnston. Mater. Sci. Forum, Vol. 34-36, (1988), p.599.

2. K.J.D. MacKenzie, R.H. Meinhold, G.V. White, C.M. Sheppard and B.L. Sherriff. J. Materials Sci., Vol. 29, (1994), p.2611.

3. T.C. Ekström, K.J.D. MacKenzie, G.V. White, I.W.M. Brown and G.C. Barris. J. Mater. Chem., Vol. 6, (1996), p.1225.

4. K.J.D. MacKenzie, T.C. Ekström, G.V. White and J.S. Hartman. J. Mater. Chem., Vol. 7, (1997), p.1057.

5. T.C. Ekström, Z-J. Shen, K.J.D. MacKenzie, I.W.M. Brown and G.V. White. J. Mater. Chem., Vol. 8, (1998), p.977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3