Superplastic Deformation of Silicon Nitride Nanocomposite at High Strain Rates

Author:

Chihara Kentarou1,Shinoda Yutaka1,Akatsu Takashi1,Wakai Fumihiro1

Affiliation:

1. Tokyo Institute of Technology

Abstract

High-strain-rate superplasticity and low-temperature superplasticity are favorable for making the use of superplastic forming for engineering ceramics even more wide spread. In this study, a silicon nitride based nanocomposite was developed for the purpose of improving the superplasticity. An amorphous powder was prepared by mechanical alloying of silicon nitride and metal titanium. A Si3N4-Si2N2O-TiN nanocomposite was fabricated by hot isostatically pressing the amorphous powder compact. A compression test was performed in the temperature range of 1573 K to 1873 K. The nanocomposite could be deformed at a strain rate of 10-2s-1, which was more than 100 times faster than that available for conventional superplastic Si3N4 at 1873 K. Furthermore, the nanocomposite was superplastically deformed in compression at low temperatures from 1573 K to 1673 K. The stress exponent and the activation energy of the nanocomposite were close to those of submicron-silicon nitride.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Viscosity of RE-Mg-Si-O-N(RE=Y, Gd, Nd and La) Melts;Journal of the Japan Institute of Metals;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3