Influence of Ultrasonic Irradiation Power on the Synthesis Kinetics of Nano-Hydroxyapatite Prepared by a Wet Chemical Process

Author:

Cao Li Yun1,Zhang Chuan Bo1,Huang Jian Feng1

Affiliation:

1. Shaanxi University of Science and Technology

Abstract

Nano-particle hydroxyapatite (HAp) was directly prepared by a wet chemical precipitation method with the aid of ultrasonic irradiation in solution using Ca(NO3)2, NH4H2PO4 and NH2CONH2 as source materials. The nano-HAp formation rate at different preparation temperatures and under different ultrasonic irradiation powers was measured and the influence of ultrasonic irradiation power on the synthesis kinetics of the nano-hydroxyapatite was investigated. It was found that the nano-HAp content increased with the increase of ultrasonic irradiation power, preparation temperature and reaction time. Under different ultrasonic irradiation power, an Arrhenius relationship was found between the nano-HAp formation rate and preparation temperature. It showed that with the increase of ultrasonic irradiation power from 100W to 200W and 300W, the synthesis activation energy of nano-HAp crystallites decrease from 63.2 KJ/mol to 59.9 KJ/mol and 48.1 kJ/mol respectively by calculation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3