Abstract
In this paper, the adsorption of human serum albumin (HSA), human serum fibrinogen (HFG) and human serum immune globulin (IG) on surfaces of diamond like carbon film (DLC), diamond film (DF) and graphite has been studied. The adsorption isotherms of single component protein solution and the competitive adsorption of binary system have been investigated by radioisotope 125 I labeling method. Results showed that (1) the adsorptive amounts of HSA on DLC is more than that of HFG, but the adsorptive amounts of HFG on DF and graphite are apparently more than those HSA; (2) the relative competitive adsorption ability of three proteins on DF and graphite surfaces is HFG > IG > HSA, but that on DLC is HFG ≈ HAS > IG, comparison with HSA, there is no apparent competitive adsorption superiority on DLC for HFG. These results indicated that there is no apparent distinction for the adsorption of three human serum proteins on DLC, but the adsorption of HFG on DF and graphite takes precedence in varying degrees. It probably makes rational explanation for the result of blood-compatibility tests in vitro that DLC is good, but DF and graphite are worse.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献