Microstructure and Formation Mechanism of Aluminized Coatings on Nickel-Based Superalloys

Author:

Pei Ji Bin1,Zhang Li Wen2,Niu Jing2,Zhang Quan Zhong2

Affiliation:

1. Dalian Boiler and Pressure Vessel Inspection Institute

2. Dalian University of Technology

Abstract

Aluminized coatings prepared on nickel-based superalloys can provide good protection against high temperature oxidation and hot corrosion. This study investigated the simple aluminized and silicon-aluminized coatings on nickel-based superalloy K4104. The simple aluminized coating was prepared by pack cementation and the Al-Si coating was prepared by slurry aluminizing, respectively. The microstructure of simple aluminized and Al-Si coatings was analyzed by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and electron probe microanalysis (EPMA). And the formation mechanism of simple aluminized and Al-Si coatings was discussed. The results showed that the simple aluminized coating was about 49 um thick and consisted of three layers. The outer layer mainly consisted of Al-rich β-NiAl. The intermediate layer consisted of Ni-rich β-NiAl and Cr-rich. The inner diffusion layer consisted of Cr-rich and γ’-Ni3Al. The microstructure of Al-Si coating showed that the coating was about 70 um thick and consisted of five layers. The Al-Si coating consisted of CrxSiy, Al-rich β-NiAl, Ni-rich β-NiAl, Cr-rich and γ’-Ni3Al. The microstructure of simple aluminized coating was compared with that of Al-Si coating in order to find out the effect of Si. Owing to the effect of Si, there was a Transition layer in Al-Si coating. The Al-Si coating was thicker than simple aluminized coating. The declining trend of the aluminum concentration in the Al-Si coating was smoother than that of the simple aluminized coating.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3