Affiliation:
1. China University of Mining and Technology
Abstract
The propagation of blast waves in intermittent jointed rock masses will result in a complex interaction between propagating waves and rock joints. Such being the case, the analysis of dynamic response of rock masses is important to rock engineering design and stability prediction. In this paper, the fracture process of intermittent jointed rock mass subjected to blast waves and initial static field,
including wing crack initiation, propagation and arrest, is analyzed using linear superposition principle and sliding crack model. Crack initiation conditions and propagation lengths under incident P-waves is put forward, and the kinking effect of propagating wing cracks subjected to S-wave is also discussed. Additional, it is demonstrated that crack arrest is controlled by static field. In order to validate the correctness of dynamic response analysis, experimental investigations were performed using lucite specimens, and the experimental results show good agreement with the analytical results.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献