Distributions of Local Damage Variable and Local Plastic Tensile Strain and Precursors to Failure of Quasi-Brittle Pure Bending Beam

Author:

Wang X.B.1

Affiliation:

1. Liaoning Technical University

Abstract

For many quasi-brittle materials (such as rock, ceramic and concrete) in pure bending state, the material on the tensile side will fail firstly since the compressive strength can be ten times the tensile strength. After tensile strain localization zone is initiated in the midspan of the beam, its propagation direction will be perpendicular to the neutral axis. In the paper, using nonlocal theory or gradient-dependent plasticity, the distributions of local plastic tensile strain and local damage variable in tensile strain localization zone of a pure bending beam are analyzed theoretically. The evolutions of the maximum local plastic tensile strain, the maximum local damage variable and the bending moment with tensile stress acting on the tensile side are presented through examples. The distributions of local plastic tensile strain and local damage variable in tensile strain localization zone are highly nonuniform due to microstructural effect. When the maximum bending moment is reached, the maximum local damage variable is proportional to the ratio of elastic modulus to elastoplastic modulus, while the maximum local plastic tensile strain is inversely proportional to elastic modulus and elastoplastic modulus. For quasi-brittle materials, the elastoplastic modulus that is a constitutive parameter equal to the absolute value of the slope of tensile stress-tensile strain curve in strain-softening stage is much higher. The present theoretical results mean that the precursors to failure are less apparent for extremely brittle materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3