Electrical Conductivity of Mixed Conductors (YO1.5)x-(CeO2)y-(ZrO2)1-x-y

Author:

Zhou Xiang Yong1,Fan Zeng1,Tang Zi Long1,Zhang Zhong Tai1

Affiliation:

1. Tsinghua University

Abstract

The Y2O3-ZrO2 binary system ceramic is considered to be most developed in application to the ZrO2-based materials. A cubic fluorite structure is generally achieved, as the metal ion of the additive (Y) takes place of the Zr4+ and oxygen ion vacancies are produced in the lattice to maintain the charge balance. This leads to almost totally ionic conductivity. The introduction of changeable valued CeO2 can further improve the total electronic conductivity through the defect equilibrium reaction between tetravalent Ce4+ and trivalent Ce3+ at high temperature and reducing atmosphere. In this study, solid phase synthesis method was employed for the preparation of (YO1.5)x-(CeO2)0.08-(ZrO2)0.9-x and (YO1.5)0.05-(CeO2)y- (ZrO2)0.95-y ceramics, while four probe DC conductivity measurement method was also applied under the temperature between 300 to 800°C. The results prove that the concentration of Y3+ is the main contribution of the electrical conductivity at low temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3