Growth of DLD-1 Colon Cancer Cells on Variotis™ Scaffolds of Controlled Porosity: A Preliminary Study

Author:

Ma Yu Jia1,Bryce Nicole S.1,Whan Renee M.1,Xiao Lucy1,Li Kai1,Ruys Andrew2,Hambley Trevor W.1,Boughton Philip3

Affiliation:

1. University of Sidney

2. University of Sydney

3. The University of Sydney

Abstract

Tissue engineering will play an increasingly vital role in cancer research. Provision of biomimetic microenvironment systems for in vitro cancer models can be addressed in part by utilizing thick 3D scaffolds with high interconnective porosity . This approach gives rise to new analytical challenges and opportunities. In this preliminary study, Variotis™ synthetic scaffolds of high interconnected porosity and hierarchical structure were used. An effective macroscopic porosity of 94.3 ±1.74 vol% was attained by using microCT and finite element methods. The actual porosity was determined to be 94.6±0.29 vol%. Scaffolds were compressed in a customized jig to thicknesses of 99.5 mm, 74.6 mm, 46.3 mm (±0.5% tolerance) and then annealed to set respective porosities of 94.3 vol%, 93.2 vol%, 89.5 vol% (±1.5% tolerance). Scaffolds were then sectioned to 2mm thickness. DLD-1 colon cancer cells were grown on 3D scaffolds of three specified porosities for varying periods of time then imaged using confocal and scanning electron microscopy methods. Hoechst staining resulted with minimal scaffold autofluoresence while autofluoresence exceeded useful limits when used in conjunction with Alexa488-phalloidin under argon laser excitation in confocal microscopy. Using Hoechst staining, DLD-1 cells (nuclei) were observed to readily attach and proliferate on Variotis™ scaffolds. Normal DLD-1 cell morphologies were evident using scanning electron microscopy. The high interconnected porosity of the scaffolds allowed cells to be observed deep within scaffolds. Scaffolds remained structurally stable and unified throughout all culture experiments and provided ease of handling during cell culture and microscopy.

Publisher

Trans Tech Publications, Ltd.

Subject

Biomedical Engineering,Bioengineering,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3