Bio-Rapid-Prototyping of Tissue Engineering Scaffolds and the Process-Induced Cell Damage

Author:

Tian Xiao Yu1,Li Ming Gan2,Chen Xiong Biao1

Affiliation:

1. University of Saskatchewan

2. Ryerson University

Abstract

Tissue scaffolds play a vital role in tissue engineering by providing a native tissue-mimicking environment for cell proliferation and differentiation as well as tissue regeneration. Fabrication of tissue scaffolds has been drawing increasing research attention and a number of fabrication techniques have been developed. To better mimic the microenvironment of native tissues, novel techniques have emerged in recent years to encapsulate cells into the engineered scaffolds during the scaffold fabrication process. Among them, bio-Rapid-Prototyping (bioRP) techniques, by which scaffolds with encapsulated cells can be fabricated with controlled internal microstructure and external shape, shows significant promise. It is noted in the bioRP processes, cells may be continuously subjected to environmental stresses such as mechanical, electrical forces and laser exposure. If the stress is greater than a certain level, the cell membrane may be ruptured, leading to the so-called process-induced cell damage. This paper reviews various cell encapsulation techniques for tissue scaffold fabrication, with emphasis on the bioRP technologies and their technical features. To understand the process-induced cell damage in the bioRP processes, this paper also surveys the cell damage mechanisms under different stresses. The process-induced cell damage models are also examined to provide a cue to the cell viability preservation in the fabrication process. Discussions on further improvements of bioRP technologies are given and ongoing research into mechanical cell damage mechanism are also suggested in this review.

Publisher

Trans Tech Publications, Ltd.

Subject

Biomedical Engineering,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3