Design Review & Preliminary Testing for a Biomimetic Absorbable Ligament Anchor

Author:

Liyanage Sandeep1,Boughton Philip1,Roger G.2,Hyvarinen Jari2,Ruys Andrew3

Affiliation:

1. The University of Sydney

2. Advanced Surgical Design and Manufacture Pty Ltd.

3. University of Sydney

Abstract

Review of current Anterior Cruciate Ligament (ACL) anchor technologies indicates that many devices facilitate osteointegration but not soft tissue in-growth. The design and preliminary testing of a novel biomimetic in-situ dilating bioabsorbable ACL anchor for simultaneous soft and hard tissue attachment is the subject of this study. The anchor method for this concept has been developed to mimic the mechanical-key configuration observed in a hair root. Reviewed anchor devices are typically interference screw-based. Screw anchors can lead to unnecessary ligament pre-stress, tearing during deployment and poor graft-bone contact. This work demonstrates a new fixation concept specifically developed for use with devices consisting of temperature-sensitive glass-reinforced-glass (GRG) soft tissue conductive biomaterial. Ligament anchorage is accomplished by dilation of the device into the base of a hair-root shaped osteotomy where a ligament with a collar and self tightening knot is inserted beforehand. This method facilitates full ligament-to-bone contact at the osteotomy zone where critical physiological ligament anchorage develops. Ligament pull-out loads equivalent to published results for conventional anchors were achieved using graft analogue. Testing with porcine ligaments resulted in a substantial reduction in ligament pull-out loads. Tibia bone sample constraints combined with the unraveling of the ligament knot were identified as primary factors for low pull-out loads for the porcine ligament tests. Subsequent design iterations will employ a reduction in prototype dimensions in addition to the use of a suture to lock the ligament knot. The hair-root shaped osteotomy and ligament anchor knot elements of this approach may be translated to other fixation systems and methods. By improving macro-mechanical-key interaction between the anchor, bone and ligament, further increase in pull-out forces may be achieved without unnecessary ligament pre-stress and tear damage caused by conventional interference screw threads.

Publisher

Trans Tech Publications, Ltd.

Subject

Biomedical Engineering,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3