The Governance of Sintering Regimes on the Properties and Ageing Resistance of Y-TZP Ceramic

Author:

Sivanesan Sivakumar1,Singh Ramesh1,Leong Chin Kong1

Affiliation:

1. University Tenaga Nasional

Abstract

The retention of nanometric microstructures is a challenge in any presureless sintering process. Grain size influences mechanical properties and grain coarsening retards densification upon sintering, thus resulting in the poor overall product properties. Hence, it is important to select, among others a suitable sintering regime which promotes densification and retards microstructure coarsening. In this work, Y-TZP ceramic bodies were fabricated under four different sintering regimes to investigate the governance of conventional Single-Stage Sintering (SSS) with 1 min and 2 h dwell time, and comparing their performance with bodies produced by Two-Stage Sintering (TSS). It was revealed that TSS sintered samples, yielded better properties than the SSS samples sintered at 1400°C with a dwell time of 2 hours. In the hydrothermal ageing test, TSS samples did not undergo the low-temperature degradation via the martensitic phase transformation of tetragonal to monoclinic symmetry. Nevertheless, it was found by XRD analysis that Y-TZP ceramics sintered by the SSS method using a short dwell time of 1 minute was effective in maintaining the tetragonal phase stability after 50 hours of exposure in superheated steam conditions.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3