Study on Forming Mechanism of Lamination Defect of AH36 Shipbuilding Plate Steel

Author:

Feng Rui1,Zhang Rui Tang2,Li Sheng Li1,Kong Guan Hong2,Zhu Xin De1

Affiliation:

1. Shandong University

2. Jinan Iron and Steel Group

Abstract

The lamination defect makes the mechanical properties deterioration along the thickness of steel plate and therefore finding out the forming mechanism is of great significance for production of shipbuilding plate steel. The tensile fracture and microstructure characteristics on AH36 shipbuilding plate steel of lamination defect were studied with Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), etc. The results show that the strength-toughness properties vary widely at different thickness of the steel plate due to different ferrite grain size, and the center zone firstly yields and steps into plastic deformation stage due to coarse ferrite grain subjected to tensile stress, while the surface zone is still in elastic deformation stage due to relatively fine ferrite grain. The inconsistency of deformation and fracture leads to fracture separation, namely lamination. The continuous banded Widmanstätten structure, strip-shaped sulphide inclusions and mixed ferrite grain distributed at the center of shipbuilding plate steel create conditions for the lamination defect, which are important reasons for fracture separation. Widmanstätten structure at the center of steel plate has relationship with coarse austenite grain, and strip-shaped sulphide inclusions have relationship with centerline segregation of continuous casting slab during solidification process.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3