Affiliation:
1. Department of Chemistry, Northeastern University
2. Northeastern University
Abstract
To reduce fuel consumption and greenhouse gas emission, dual phase (DP) steels have been considered for automotive applications due to their higher tensile strength, better initial work hardening along with larger elongation compared to conventional grade of steels. In such applications, which would create potential safety and reliability issues under dynamic loading, the mechanical behavior of DP steel considering the strain rate must be examined. In the present study, the dynamic tensile behavior of DP600 steel sheets was investigated using a high-speed tensile testing machine at various strain rates. And the quasi-static tensile testing was also conducted on the steel to understand the effect of the strain rate on the tensile property. The fracture mechanisms of the steel were also analyzed. The results show that the mechanical properties of DP600 steel are noticeably influenced by the strain rates. As the strain rate increases, the strength of the steel increases and the obvious yield phenomenon can be observed when the strain rate is above 0.01 s-1. The fracture elongation of DP600 steels decreases with increasing strain rate from 0.001 to 1 s-1, then increases up to the strain rate of 100 s-1 and reaches the lowest value at the strain rate of 1000 s-1. DP600 steel sheet exhibit typical ductile fracture characteristics with dimples morphology of the facture surface when tensile deformed at various strain rates.
Publisher
Trans Tech Publications, Ltd.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献