Surface Roughness Optimization in End Milling Using the Multi Objective Genetic Algorithm Approach

Author:

Al Hazza Muataz H.F.1,Adesta Erry Yulian Triblas1,Riza Muhammad1,Suprianto M.Y.1

Affiliation:

1. International Islamic University Malaysia (IIUM)

Abstract

In finishing end milling, not only good accuracy but also good roughness levels must be achieved. Therefore, determining the optimum cutting levels to achieve the minimum surface roughness is important for it is economical and mechanical issues. This paper presents the optimization of machining parameters in end milling processes by integrating the genetic algorithm (GA) with the statistical approach. Two objectives have been considered, minimum arithmetic mean roughness (Ra) and minimum Root-mean-square roughness (Rq). The mathematical models for the surface roughness parameters have been developed, in terms of cutting speed, feed rate, and axial depth of cut by using Response Methodology Method (RSM). Due to complexity of this machining optimization problem, a multi objective genetic algorithm (MOGA) has been applied to resolve the problem, and the results have been analyzed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference14 articles.

1. F. Kolahan, and M. Abachizadeh, Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method. International Journal of Engineering and Applied Sciences 6: 3 (2010).

2. M. H AlHazza and Adesta E. Y. T, New Approach in Cost Structuring Of High Speed Hard Turning. Advanced Materials Research. 264-265 (2011) 1003-1008.

3. M.S. Lou, Joseph C. Chen & Caleb M. Li, Surface Roughness Prediction Technique for CNC End-Milling. Volume 15, Number 1 - November 1998 to January (1999).

4. T. Childs, K. Maekawa, T. Obikawa, and Y. Yamane, Metal Machining Theory and Applications, John Wiley & Sons Inc. New York-Toronto (2000).

5. A. Manna, and A. Salodkar,. Optimization of machining conditions for effective turning of E0300 alloy steel. Journal of materials processing technology, 203 (2008)147–153.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3