Affiliation:
1. Universität Siegen
2. Technische Universität Dresden
Abstract
The experimental observation of the microstructural deformation behavior of a metastable austenitic stainless steel tested at the real VHCF limit indicates that plastic deformation is localized and accumulated in shear bands and martensite formation occurs at grain boundaries and intersecting shear bands. Based on these observations a microstructure-sensitive model is proposed that accounts for the accumulation of plastic deformation in shear bands (allowing irreversible plastic sliding deformation) and considers nucleation and growth of deformation-induced martensite at intersecting shear bands. The model is numerically solved using the two-dimensional (2-D) boundary element method. By using this method, real simulated 2-D microstructures can be reproduced and the microstructural deformation behavior can be investigated within the microstructural morphology. Results show that simulation of shear band evolution is in good agreement with experimental observations and that prediction of sites of deformation-induced martensite formation is possible in many cases. The analysis of simulated shear stresses in most critical slip systems under the influence of plastic deformation due to microstructural changes contributes to a better understanding of the interaction of plastic deformation in shear bands with deformation-induced martensitic phase transformation in the VHCF regime.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference20 articles.
1. C. Berger, H. -J. Christ, Fifth international conference on very high cycle fatigue, DVM, Berlin, Germany, (2011).
2. P. Lukáš, L. Kunz, Specific features of high-cycle and ultra-high-cycle fatigue, Fatigue Fract. Eng. Mater. Struct. 25 (2002) 747–753.
3. J. Man, K. Obrtlik, J. Polak, Study of surface relief evolution in fatigued 316L austenitic stainless steel by AFM, Mat. Sci. Eng. A 351 (2003) 123-132.
4. H. Mughrabi, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall. Mater. Trans. A 40 (2008) 1257-1279.
5. H. -J. Christ, U. Krupp, C. Mueller-Bollenhagen, I. Roth, M. Zimmermann, Effect of deformation-induced martensite on the fatigue behavior of metastable austenitic stainless steels, Proceeding of the 12th International Conference on Fracture, Ottawa, Canada (2009).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献