Computing Flatness Defects in Sheet Rolling by Arlequin and Asymptotic Numerical Methods

Author:

Kpogan Kekeli,Tampango Yendoubouam1,Zahrouni Hamid2,Potier-Ferry Michel2,Ben Dhia Hachmi1

Affiliation:

1. Ecole Centrale Paris

2. Université de Lorraine

Abstract

Rolling of thin sheets generally induces flatness defects due to thermo-elastic deformation of rolls. This leads to heterogeneous plastic deformations throughout the strip width and then to out of plane displacements to relax residual stresses. In this work we present a new numerical technique to model the buckling phenomena under residual stresses induced by rolling process. This technique consists in coupling two finite element models: the first one consists in a three dimensional model based on 8-node tri-linear hexahedron which is used to model the three dimensional behaviour of the sheet in the roll bite; we introduce in this model, residual stresses from a full simulation of rolling (a plane-strain elastoplastic finite element model) or from an analytical profile. The second model is based on a shell formulation well adapted to large displacements and rotations; it will be used to compute buckling of the strip out of the roll bite. We propose to couple these two models by using Arlequin method. The originality of the proposed algorithm is that in the context of Arlequin method, the coupling area varies during the rolling process. Furthermore we use the asymptotic numerical method (ANM) to perform the buckling computations taking into account geometrical nonlinearities in the shell model. This technique allows one to solve nonlinear problems using high order algorithms well adapted to problems in the presence of instabilities. The proposed algorithm is applied to some rolling cases where “edges-waves” and “center-waves” defects of the sheet are observed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3