The Calibration of High Energy-Rate Impact Forging Hammers by the Copper-Column Upsetting Method and High Speed Camera Measurements

Author:

Galdos Lander1,Sáenz de Argandoña Eneko1,Herrero Nuria1,Ongay Mikel2,Adanez Julen2,Sanchez Meritxell2

Affiliation:

1. Mondragon University

2. Ulma Piping S.Coop.

Abstract

The hammer forging is a well-known technology to incrementally produce geometrically complex forgings by compressing the material against the dies using several forming blows. When forging aeronautical components with this technology, it is crucial to control the final grain size of the part since this variable highly influences the high temperature low cycle fatigue properties. Nowadays, it is common practice to use the finite element models coupled with recrystallization models to optimize the process parameters and strategy. However, a very important variable to conduct these simulations is the real available hammer energy, which must be calibrated, not being an easy task since very high forces are generated in the impact of the anvils. In the present paper, the copper-column upsetting method is compared with a novel method where a high speed camera has been used to compute the anvils’ velocity and corresponding energies. The compressive behavior of the copper samples has been characterized using Rastegaev compression tests. The experimental and calculated results using the high speed camera are compared to the ones obtained using high purity copper samples. These measurements have enable to quantify the influence the friction and the elastic rebound have during the energy transfer from the anvils to the billet. This makes possible a precise future characterization of hammers using the conventional copper-column upsetting method if high speed cameras are not available in workshop.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3