Design and Manufacturing of Variable Angle Tow Laminate

Author:

Haavajõe Anti1,Mikola Madis1,Pohlak Meelis1

Affiliation:

1. Tallinn University of Technology

Abstract

Variable angle tow (VAT) laminates have shown enhanced stiffness/strength performance compared to conventional straight fiber laminates. Employment of VAT allows utilizing variable stiffness design of composite structure, thus it widens the design possibilities. As a result, composite structure with improved mechanical characteristics can be manufactured. The main aims of the current study are to give an overview on methods and algorithms used for analysis and design of VAT laminates, and to develop technology and equipment for manufacturing laminate with improved structural performance. In order to improve the accuracy of the compaction process, a set of experiments were carried out using a simple testing device. For measuring the compaction force, a pneumatic cylinder, pressure regulator and digital manometer were used. The temperature of the consolidation area and the heat distribution were screened with the thermal camera. Infrared heater was used as a heating source. Material used in the experiment was carbon fiber reinforced polyamide.Findings show that in addition to the main parameters – the compaction force and temperature, there are many minor factors, such as the compaction wheel diameter, material and surface roughness of the compaction roller, the material and surface roughness of the mold and the pretension in the laminating tape and also the laminating speed, all influence the quality of the final product.Key words: Advanced Fiber Placement Technology, Automated Fiber Placement, Automated Tape Laying, Fiber Reinforced Composites, Laminates

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling process parameters of the PA12-CF60 carbon fiber laminating tape for low cost laminating devices;INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019;2020

2. High-fidelity aerostructural optimization of tow-steered composite wings;Journal of Fluids and Structures;2019-07

3. Effect of the attitude fine-adjustment of compaction roller on automated fiber placement defects and trajectory;Journal of Reinforced Plastics and Composites;2019-02-26

4. Modeling and impact analysis on contact characteristic of the compaction roller for composite automated placement;Journal of Reinforced Plastics and Composites;2018-09-18

5. Experimental study of steered fibre composite production;Proceedings of the Estonian Academy of Sciences;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3