Analysis into Differences between the Buckling in Single-Point and Two-Point Incremental Sheet Forming of Components for Self-Supporting Sheet Metal Structures

Author:

Bailly David1,Bambach Markus1,Hirt Gerhard2,Pofahl Thorsten3,Herkrath Ralf3,Trautz Martin1

Affiliation:

1. RWTH Aachen University

2. RWTH Aachen

3. Chair for Structures and Structural Design - RWTH Aachen

Abstract

In the architecture and construction sector the trend for individualization is often expressed in complex-shaped freeform buildings. Due to missing universal and mature construction methods for freeform buildings, they are usually realized with customized solutions that often include massive, material-consuming substructures, while the visible skin has neither structural nor functional properties. In this context a new concept for self-supporting lightweight structures for the realization of free-form surfaces and the production of the corresponding components has recently been proposed. Taking into account the large part dimensions and the varying part geometries in this application a flexible production chain based on incremental sheet forming has been developed and optimized. It has been validated by producing six-sided large-scale pyramids in 140 similar variants which were assembled to a self-supporting free-form demonstrator. Two-point incremental sheet forming (TPIF) was used with a universal partial supporting tool with the goal to produce all variants without dedicated tooling. Although the majority of pyramids was produced successfully with the applied TPIF strategy, there was a small number of parts with a very asymmetric shape that showed severe buckling in the side walls. For a detailed analysis of this observation the asymmetry was quantified using a wall angle ratio. Subsequently, a single-point incremental sheet forming (SPIF) strategy was successfully applied as an approach to avoid buckling. The results confirm the assumption that the circumferential expansion in SPIF suppresses buckling due to tensile stresses in the side walls, whereas the circumferential compression in TPIF triggers buckling due to the compressive stresses in the side walls.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Incremental Sheet Forming for Cladding Panels with Customized Design;Advanced Sciences and Technologies for Security Applications;2024

2. Energy consumption, carbon emissions, product cost, and process time in incremental sheet forming process: A holistic review from sustainability perspective;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2022-05-01

3. On the Geometrical Accuracy in Incremental Sheet Forming;Forming the Future;2021

4. Single point incremental forming: state-of-the-art and prospects;International Journal of Material Forming;2017-12-29

5. Simulation of incremental sheet forming using partial sheet models;Procedia Engineering;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3