Experimental Study on the Incremental Forming of Coated Aluminum Alloy Sheets

Author:

Astarita Antonello1,Carrino Luigi2,Durante Massimo2,Formisano Antonio2,Langella Antonio2,Minutolo Fabrizio Memola Capece1,Paradiso Valentino1,Squillace Antonino1

Affiliation:

1. University of Naples "Federico II"

2. University of Naples Federico II

Abstract

Superficial coatings are widely used in industrial applications in order to improve the superficial properties of metallic components. In particular, in the aeronautic field, all the components are coated in order to prevent both corrosion and wear. In this field, heat treatable aluminum alloys, in age hardened condition, are used; consequently, superficial coatings must be carried out through “cold” processes, i.e. coating processes in which the component to be coated remains at low temperatures, below 100°C. Cold gas dynamic spray technique (CGDS) is a process of deposition that consists in the realization of surface coatings with high-velocity metal particles sprayed on the substrate at temperature significantly lower than the melting one of the substrate itself and at relatively low temperatures if compared to other spray techniques. When processing conditions are optimized, the process can produce near fully dense coatings. This technique could be particularly useful in the coating of rolled sheets, needing of successive cold plastic deformations. One of the cold plastic processes is incremental forming, a high flexible process for rapid manufacturing of complex sheet metal part shapes; it presents the potential to be easy to automate and particularly attractive for small batches and customized parts. In this process, a simple tool describes a path that allows to locally deform the sheet clamped along its periphery. The aim of this paper is to study the evolution and behaviour of aluminum coating deposed by CGDS on AA 2024-T3 sheets carried out by an incremental forming process. This evaluation is carried out by characterizing the cold sprayed coating after the forming process for different wall angles of simples geometries.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3