Analysis of Tensile Test of Titanium EBW Sheet

Author:

Adamus Janina1,Motyka Maciej2

Affiliation:

1. Czestochowa University of Technology

2. Rzeszow University of Technology

Abstract

The continuous pursuit of vehicle weight reduction forces the industry to look for alternative materials to steel. Light alloys such as aluminium or titanium are materials that provide a decrease in weight using conventional technologies. Additional weight reduction results from using tailor-welded blanks (TWB). While the joining and forming steel or even aluminium TWBs is quite well known and described in the technical literature, joining and forming titanium TWBs still poses a significant problem. In the paper, experimental tests carried out with welded samples manufactured from commercially pure titanium Gr 2 and titanium alloy Gr 5 sheets are presented. The samples were joined by electron beam welding. Mechanical testing and optical microscopy were used to characterise the welds and the base metal of the samples. The samples were subjected to uniaxial tension up to final failure. The 3‑D Digital Image Correlation system ARAMIS was used for monitoring the whole deformation process. This makes it possible for real-time observation of sample deformation. The test results and the numerical analysis of the tensile tests are compared. The numerical simulations were carried out with the ADINA System based on the Finite Element Method (FEM). The mechanical analysis leads to calculation of the strain state after sample deformation in uniaxial tension (mechanical model).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3