Surface Modifications for Optimized Forming Operations

Author:

Braeuer Guenter1,Paschke Hanno1,Weber Martin1,Behrens Bernd Arno2,Yilkiran Timur2

Affiliation:

1. Fraunhofer Institute for Surface Engineering and Thin Films

2. Leibniz Universität Hannover

Abstract

During forming operations the contact conditions relating to the surface of the tools, the intermediate coolant or lubricant and the hot work piece material are determining the material flow and the resulting wear. The possibilities for an optimization of the tool surfaces are aspects of various scientific activities of IST and IFUM and are subject of this paper. Tools typically made of hot working steel can be treated with different technologies in order to achieve wear resistant properties. First of all, the surface is mainly determined by its topography which is defined by the manufacturing method or applied finishing technology. This paper will give an overview to adjustable surface properties with additional conditioning methods like severe shot peening. The stabilization of the topography is a new approach to enhance the wear resistance of forming tools. Several models like the Abbott-Firestone graph are used in order to obtain suitable describing parameters such as the roughness-parameter sk. The development of skduring the running-in stage has a strong influence on the tool life which can be shown. A stabilization of the topographical conditions can enhance the service life of the tools. It will be shown, that this is possible by applying plasma diffusion treatments and thin film coatings by means of vacuum coating technologies.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3