Copper Metal Matrix Composites Reinforced by Titanium Nitride Particles

Author:

Wąsik Mateusz1,Karwan-Baczewska Joanna1

Affiliation:

1. AGH University of Science and Technology

Abstract

Copper based Metal Matrix Composites are promising materials for electrical and electrotechnical applications such as electronic packaging and contacts, resistance welding electrodes, heat exchangers etc. Introducing the ceramics particles into the copper matrix allows to achieve a higher mechanical properties comparing to pure copper. The literature shows the variety of reinforcement materials are used. The most commonly strengthening phase include: oxides Al2O3,Y2O3, SiO2, carbides SiC, WC, TiC, ZrC, borides TiB2, ZrB2 and others such us volcanic tuff, carbon or intermetalic phases Al-Fe. [1-7]. It is obvious that reinforcement material without TiN leads to decrease the electrical conductivity of copper. Preliminary investigations concerning nanoscale Cu-based composites with TiN particles were presented in papers [10, 11]. Powder metallurgy (PM) process leads to obtain uniform distribution of strengthening phase in matrix. In order to achieve uniform distribution the process parameters such as mixing and selection the sizes of particles must be appropriate selected. The another factor of decreasing the mechanical and electrical properties by using PM route is porosity. Conventional PM process includes pressing and sintering does not always allow to achieve the high density what is one of the main criterion for high electrical conductivity material. The hard ceramic particles in metal matrix which are not deformable make difficult the densification process. In some cases the use of more advanced methods of production is desirable. The use of titanium nitride particles is justified by their high electrical conductivity in compare to the other reinforcement materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3