Identification of Wool and Cashmere Based on Texture Analysis

Author:

Yuan Sen Lin1,Lu Kai1,Zhong Yue Qi1

Affiliation:

1. Donghua University

Abstract

In order to separate wool from cashmere efficiently, an identification method based on texture analysis was proposed in this paper. The microscopic images captured by CCD digital camera were preprocessed as the texture image. Improved Tamura texture feature were employed to analyzing the final texture images and to attaining the texture parameters. Through a large number of samples, the mathematical modeling was completed by using neural network. Experiment results indicate that texture analysis can be a feasible method to identify cashmere and wool.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference9 articles.

1. Guifen Yang, Yan Fu, Xia Hong, Cuifang Wang, Aiqin Gao, Jingmei Cheng, Discussion on the SEM/OM in cashmere identification, China Fiber Inspection, 2006, 6: 17-20.

2. W. A. van, Niekerk. S. Keva, The accuracy of Video Imagine Analysis (VIA) and Optical Fiber Diameter Analysis (OFDA) to measure fiber diameter of cashmere [J], South African Journal of Animal Science, 2004, 34: 143-144.

3. HE Lanzhi, CHEN Liping, WANG Xuemei, Detection methods of distinguishing cashmere and wool fibers, Progress in Textile Science & Technology, 2008, 2: 64-65.

4. Nelson G, Hamlyn P F, Holden L, Macarthy B J. A species-specific DNA probe for goat fiber identification[J]. Textile Research Journal, 1992, 62(10): 590-595.

5. Guoliang Zhao, Jing Xu, Identification of wool and cashmere with near infrared spectroscopy technology, Wool Textile Journal, 2006, 1: 42-44.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3