Experimental Modeling of Wear Behavior of Filled Elastomer SBR under Dry Friction-Influence of Roughness

Author:

Djeridi Rachid1,Ould Ouali Mohand1

Affiliation:

1. Université Mouloud Mammeri de Tizi-Ouzou

Abstract

The wear behaviour of a filled styrene butadiene rubber (SBR) is investigated in this paper. The material contact used is plan /plan with a hard steel XC38. The influence of tribological parameters such as type contact (contact plan/plan under dry friction), relative motion between the contact surfaces (rotational disc/fixed elastomer sample), topography of the surface contact (roughness), loading (normal load or contact pressure), sliding friction and operating time or number of cycles is investigated. The highlighting of these parameters influence and analysis results permits us to formulate a wear model for the filled elastomer SBR. The model is based on the Archard law developed for metallic materials. The modification concerns the introduction of material parameters to take accounts the hyperelastic behaviour of elastomer due to the presence of amorphous phase. Particular interest is given to the influence of the surface state of the indenter given by the counterface arithmetic roughnessRaon the weight loss of the elastomer due to the wear phenomena. For a lower value (little to 6.3μm) of the arithmetic roughness, the weight loss is insignificant for different contact pressure and various sliding speeds. This effect is more noticeable at higher values of roughness and dependent on other tribological parameters. This results comfort other conclusion on the literature that express the influence of roughness by the geometric parameters of the micro-waves in the surface. The effects of the roughness can be explained by the ratio between the amplitude and wavelength of the corrugation. Indeed, we relate the roughness influence at the strain energy restored by material hyperelastic which also is, necessarily, a function of the velocity sliding and pressure contact.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3