The Influence of Post-Quenching Deep Cryogenic Treatment on Tempering Processes and Properties of D2 Tool Steel. Studies of Structure, XRD, Dilatometry, Hardness and Fracture Toughness

Author:

Wierszyłłowski Ignacy1

Affiliation:

1. Leszno State College of Professional Education

Abstract

A significant increase in durability of cryogenically treated tools after quenching was reported by a number of publications [1, 2]. As research studies show [4, 5, 6, 7], the main reason for this is the kind of carbides precipitated during tempering at temperature range of 150 –200 0C, which is different than in the case of conventional treatment. These carbides are finer and more evenly distributed in the matrix of steel. The number of carbides is higher than in conventionally treated steels because of higher fraction of martensite in cryogenically treated steels produced by retained austenite transformation at cooling to deep cryogenic temperatures. The number of carbides precipitated from martensite at low temperatures of tempering is proportional to shrinkage produced at the same temperatures of tempering. Calculations on the basis of dilatometric experiments show that the shrinkage difference between the same D2 steel cryogenically and conventionally treated is higher than that which results from the increased fraction of martensite in cryogenically treated steel. The XRD studies of cryogenically treated steel show a presence of two kinds of martensites differing in tetragonality. Low temperature tempering of cryogenically treated steel produced two types of carbides – ε carbide and η carbide. The conventionally treated steel consists of one kind of tetragonal martensite and one kind of carbide - the ε carbide. The hardness of cryogenically treated samples was somewhat higher than in conventionally treated ones, while fracture toughness of conventionally treated samples was somewhat higher than in cryogenically treated ones. The results obtained were discussed in reference to literature data.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Reference14 articles.

1. J.D. Verhovern Fundamentals of Physical Metallurgy, John Wiley &Sons Inc. (1975).

2. Alloying. Edited by John L. Walter, Melvin R. Jackson, Chester T. Sims. ASM International Metals Park, Ohio 44073, (1988).

3. D.A. Porter, K.E. Easterling. Phase Transformations in Metals and Alloys. Van Nostrand Reinhold Company, New York, (1981).

4. P. Paulin: Cutting Tool Engineering, August 1992 p.62.

5. P. Paulin: Industrial Heating, August 1992 p.24.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3