Shape-Memory Polymers for Biomedical Applications

Author:

Lendlein Andreas1,Behl Marc2

Affiliation:

1. GKSS Research Center

2. GKSS Research Center Geesthacht GmbH

Abstract

Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. On the other side, different biomedical applications are demanding different combinations of material properties and functionalities. Compared to the intrinsic material properties, a functionality is not given by nature but result from the combination of the polymer architecture and a suitable process. Examples for functionalities that play a prominent role in the development of multifunctional polymers for medical applications are biofunctionality (e.g. cell or tissue specificity), degradability, or shape-memory functionality. In this sense, an important aim for developing multifunctional polymers is tailoring of biomaterials for specific biomedical applications. Here the traditional approach, which is designing a single new homo- or copolymer, reaches its limits. The strategy, that is applied here, is the development of polymer systems whose macroscopic properties can be tailored over a wide range by variation of molecular parameters. The Shape-memory capability of a material is its ability to trigger a predefined shape change by exposure to an external stimulus. A change in shape initiated by heat is called thermally-induced shape-memory effect. Thermally, light-, and magnetically induced shape-memory polymers will be presented, that were developed especially for minimally invasive surgery and other biomedical applications. Furthermore triple-shape polymers will be introduced, that have the capability to perform two subsequent shape changes. Thus enabling more complex movements of a polymeric material.

Publisher

Trans Tech Publications Ltd

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-healable conductive polyurethane with the body temperature‐responsive shape memory for bone tissue engineering;Chemical Engineering Journal;2021-05

2. Medical application of biomimetic 4D printing;Drug Development and Industrial Pharmacy;2021-04-03

3. An Extensive Review of Shape Memory Polymers for Biomedical Applications;IOP Conference Series: Materials Science and Engineering;2020-12-31

4. IOT Based Real-time Medical Device Monitoring System;IOP Conference Series: Materials Science and Engineering;2020-12-01

5. Bio-based composites from plant based precursors and hydroxyapatite with shape-memory capability;Composites Science and Technology;2020-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3