Micromask Generation for Polymer Morphology Control: Nanohair Fabrication for Synthetic Dry Adhesives

Author:

Sameoto Dan1,Li Ya Song1,Menon Carlo1

Affiliation:

1. Simon Fraser University

Abstract

Since early this decade, investigations into how geckos achieve their remarkable adhesive properties, have determined that multi-scale compliant systems can allow geckos to attach to nearly any surface through Van der Waals forces. Microscopic hairs on the bottom of gecko feet can make intimate contact over large areas, and allows relatively weak Van der Waals forces to produce significant adhesion on the macroscale. Over the past five years, microfabrication technology has been used to replicate these multi-scale compliant mechanisms, using silicon or polymers to reproduce microscale rods or cantilevers to produce what is known as a dry adhesive. What is more difficult is creating the nanoscale compliant systems that create most contact areas in gecko feet. This work examines how a well known problem in reactive ion etching processes, RIE "grass" can be used to great effect to alter surface morphology on the nanoscale for nearly any polymer. Identical etching parameters in the presence of different elements, like gold or aluminum, can result in radically different surface morphologies and material behaviors, potentially allowing both adhesive and non-adhesive areas to be formed in a single material. This technique is potentially the easiest and fastest way to produce nano-compliant systems for use with dry adhesives.

Publisher

Trans Tech Publications Ltd

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3