Performance of CVD Mullite Coatings on Silicon Nitride under High Temperature High Load Conditions

Author:

Zemskova S.M.1,Lin Hua Tay2,Ferber Mattison K.,Haynes A.J.

Affiliation:

1. Caterpillar Inc.

2. Oak Ridge National Laboratory

Abstract

Previous studies have demonstrated that dense coatings of CVD mullite (3Al2O3×2SiO2) provide excellent oxidation protection for Si3N4 and SiC in a high pressure, steam environment. In this study the mechanical properties of CVD mullite coated silicon nitride materials from different vendors (AS800, NGKSN88, Kyocera SN281) were evaluated following ASTM test procedures. The dynamic fatigue tests werep erformed in ambient air at temperatures of 850 and 1200°C under fast (30 MPa/s) and slow (0.003 MPa/s) load rates. The static fatigue tests were carried out at a constant load of 350 MPa for 1000h at 1200°C. The cyclic fatiguetests at 850°C consisted of a loading ramp from 20 to 400 MPa in 30 seconds followed by unloading ramp from 400 to 20 MPa. A total of 10,000 cycles were applied to the fatigue test specimens before fast fracture tests were conducted at room temperature. The strength test results indicated that CVD mullite coatings showed excellent adhesion during dynamic fatigue tests and exhibited no creep behavior. Minor flexure strength reduction observed at low stressing rate and at high temperatures appeared to be related to Si3N4 properties such as SCG (slow crack growth) susceptibility. During cyclic and static fatigue tests, a glassy silica/aluminosilicate phase was formed due to oxidation. This resulted in localized coating separation and buckling. However, accumulation of this corrosion layer was not critical since the coated specimens showed a flexure strength increase of ~7-9.5%.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strength Degrading Mechanisms in Plasma Spray Coated Silicon Nitride;Advanced Ceramic Coatings and Interfaces V;2010-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3