The Roles of Specific Residues on ERK2 for Nuclear Translocation in Response to Nerve Growth Factors in PC12 Cells

Author:

Yoon Seung Hee1,Seger Rony2,Choi Eui Jung3,Yoo Young Sook1

Affiliation:

1. Korea Institute of Science and Technology

2. Weizmann Institute of Science

3. Agency for Defense Development

Abstract

Extracellular signal-regulated kinases (ERKs) are phosphorylated on threonine and tyrosine residues at 183 and 185, respectively, and then translocated from cytosol to nucleus. ERK2 is retained in the nucleus for several hours by nerve growth factor (NGF), and this sustained retention of ERK2 in the nucleus has effect on the fate of biological response toward differentiation by neurite outgrowth in PC12 cells. The overexpression of Green Fluorescent Protein (GFP)-ERK2 and mutated GFP-ERK2 constructs without anchoring protein MEK1 were distributed throughout the resting and the activated cells. When GFP-ERK2 coexpressed along with MEK1, cytosolic localization of GFP-ERK2 is retained by MEK1 in the resting PC12 cells. This cytosolic retention was due to the binding of ERK2 to the MEK1. Upon stimulation by growth factors, the association between GFP-ERK2 and MEK1 was detached from each other, and then GFP-ERK2 was translocated into the nucleus. However, inactive form of the MKP-3 cytosolic phosphatase forced ERK cytosolic retention in PC12 cells were either left untreated or stimulated by NGF. When the transfected PC12 cells were treated for 72hrs with NGF, GFP-ERK2 was distributed the cytosol. Regarding its subcellular localization, the roles of residues 179-185 located in the activation loop of ERK2 were examined. The substitution of residues in the activation loop to alanine showed different localization on the nuclear translocation of ERK2 in PC12 cells.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3