Tissue-Engineered Skin Substitutes Using Collagen Scaffold with Amniotic Membrane Component

Author:

Yang Eun Kyung1,Park Jung Keug2,Ahn Jae Il2,Lee Hee Gu3,Seo Seong Jun4,Son Dae Gu5,Kim Jae Chan4,Song Kye Yong4

Affiliation:

1. Bioland Ltd.

2. Dongguk University

3. Korea Research Institute of Bioscience and Biotechnology

4. Chung-Ang University

5. Keimyung University

Abstract

Human skin substitutes are needed for implantation and wound repair based on the new concept of tissue engineering in combination with biomaterials and cell biological technology. However, failure sometimes occurs when the wound healing is delayed in vivo due to acute inflammation resulting from the early degradation of the transplanted biomaterials. Accordingly, the current study modified conventional biomaterials to overcome early degradation and strong inflammation. In a conventional skin substitute, the animal origin collagenous materials have a slight antigenicity as xenogenic materials, however, the modified method was able to obtain a low antigenicity and anti-inflammation effect using atelo-collagen and an amniotic component. The tyrosine content in the developed atelo-collagen, representing the antigenicity, was reduced from 0.590% to 0.046% based on an HPLC analysis. In addition, to reduce the inflammation and foreign material reaction, an amniotic component was applied to the atelo-collagen materials. While, to enhance the wound healing, the modified skin substitute was developed as a composite matrix of an atelo-collagen scaffold with an amniotic membrane component. A quantitative analysis of hEGF in the amniotic membrane was also performed using different processing methods. Finally, a tissueengineered skin substitute was constructed by cultivating skin cells in the collagen scaffold attached to an amniotic membrane.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3