Damage Analysis of Internal Surface Flaws Using Thermoelastic Stress Analysis

Author:

Sathon N.1,Dulieu-Barton Janice M.1

Affiliation:

1. University of Southampton

Abstract

Thermoelastic Stress Analysis (TSA) has been used to detect and evaluate the severity of damage on a flat metallic plate. The damage takes the form of a semi-circular notch that represents a surface flaw. Thermoelastic data was gathered from the undamaged side of the plate. The experimental results show that shallow surface flaws can be detected by using phase information from thermoelastic data. This information can then be used to indicate the flaw severity in terms of the notch depth. It is shown that the phase data is dependent on the heat conduction effects around the notch, which enable an assessment of the damage. This is modelled using a simple finite element simulation of the effects of heat conduction on the thermoelastic response. A discussion on the potential of using phase variation across damaged regions to analyse damage severity is provided.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of residual plastic strain on the thermoelastic behavior of a titanium alloy;Journal of Applied Physics;2019-03-28

2. Thermoelastic stress analysis with a compact low-cost microbolometer system;Quantitative InfraRed Thermography Journal;2013-12

3. Thermoelastic assessment of plastic deformation;The Journal of Strain Analysis for Engineering Design;2008-06-01

4. Thermoelastic Investigation of Damage Evolution in Small Stainless Steel Pipework;Experimental Analysis of Nano and Engineering Materials and Structures;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3