Deburring of Sheet Metal by Barrel Finishing

Author:

Boschetto Alberto1,Ruggiero Armando1,Veniali Francesco1

Affiliation:

1. Università La Sapienza

Abstract

In sheet metal processes the burrs cannot be completely eliminated during the process but can be minimized by optimization of the process parameters. Hence the deburring often becomes an essential secondary operation. Most of the deburring operations are hand-made and therefore several manufacturers tend to eliminate these tedious and labor-intensive operations due to time and cost issues. Moreover, clamping problems can arise which, together with the deburring forces, can induce dimension alterations and local deformations, particularly for thin sheets. Barrel finishing is an old technique commonly used to improve the surface roughness of complicated parts, but can find interesting applications also in the deburring. Aim of this work is to present an experimental investigation on the deburring of sheet metal performed by barreling. A technological model has been developed in order to assess the height of the burr as a function of the initial burr and of the working time.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotary barrel tumbling as a method of surface preparation for pin-on-disc wear testing samples;Surface Topography: Metrology and Properties;2024-08-12

2. Improving the surface quality of AlMgSi1 alloy with the selection of the appropriate vibration grinding stones;Journal of Engineering and Applied Science;2024-02-07

3. Experiment and simulation analysis on the mechanism of the spindle barrel finishing;The International Journal of Advanced Manufacturing Technology;2020-06-30

4. Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review;Journal of Manufacturing Processes;2018-01

5. Barrel Finishing Technology;Surface Finishing Theory and New Technology;2017-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3