Synthesis and Characterization of Li[Ni(1/3-x)Mn(1/3-x)Co(1/3-x)Mx]O2(M=Fe,Mg,Al) Particle by Aerosol Process

Author:

Myoujin Kenichi1,Ogihara Takashi1,Nakane Koji2,Ogata Nobuo2

Affiliation:

1. University of Fukui

2. Fukui University

Abstract

Spherical Li[Ni(1/3-x)Mn(1/3-x)Co(1/3-x)Mx]O2 (M=Fe, Mg, Al) precursor powders were synthesized by ultrasonic spray pyrolysis using aqueous solution of metal nitrate. X-ray diffraction (XRD), scanning electron microscope (SEM), BET method using N2 adsorption analysis and Battery tester were used for determination of the composition, morphology, particle size, surface area and electrochemical properties. SEM observation showed that the size of as-prepared particles were about 0.9 μ with narrow size distribution. The crystal phase of Li[Ni(1/3-x)Mn(1/3-x)Co(1/3-x)Mx]O2 (M=Fe, Mg, Al) was resulted in layered rock salt structure with R3m space group by calcinations at 1023 K for 10 h. No impurity-related peaks are observed from the XRD pattern with various doping metals. Mg and Al doped Li(Ni1/3Co1/3Mn1/3)O2 showed very good cycling stability. The Mg substitution for Ni led to the most excellent. On the other hand, the capacity degradation during cycling was observed by Fe substitution for Mn doped Li(Ni1/3Co1/3Mn1/3)O2.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3